Ks0267 keyestudio APDS-9930 Attitude Sensor Module: Difference between revisions

From Keyestudio Wiki
Jump to navigation Jump to search
No edit summary
 
(25 intermediate revisions by the same user not shown)
Line 1: Line 1:
<br>
==Keyestudio APDS-9930 Attitude Sensor Module==
==Keyestudio APDS-9930 Attitude Sensor Module==
<br>[[File:KS0267-1.jpg|500px|frameless|thumb]]<br>
<br>[[File:KS0267--.png|500px|frameless|thumb]]<br>


<br>
==Introduction==
==Introduction==
Keyestudio APDS-9930 attitude sensor module mainly uses APDS-9930 chip. APDS-9930 in a single 8 pin package can provide the ambient light sensor which is compatible with I2C interface and the infrared LED proximity sensor. <br>
The ambient light sensor uses double light diode to approximate the visual response of low lumen human under 0.01 lux illumination, and its high sensitivity allows the device to operate in the dark glass.  <br>
The proximity sensor which is completely adjusted can detect 100 mm object, and exempt the factory calibration requirements of terminal equipment as well as sub-components. From the bright sunlight to the dark room, proximity sensor’s proximity detection function can operate well. <br>
This module added micro optical lens can provide infrared energy efficient transmission and reception, which can reduce the overall power consumption. In addition, its internal state machine can make the device into a low power mode, bringing a very low average power consumption. <br>


Keyestudio APDS-9930 attitude sensor module mainly uses APDS-9930 chip. APDS-9930 in a single 8 pin package can provide the ambient light sensor which is compatible with I2C interface and the infrared LED proximity sensor. The ambient light sensor uses double light diode to approximate the visual response of low lumen human under 0.01 lux illumination, and its high sensitivity allows the device to operate in the back of dark glass.
<br>[[File:KS0267-(1.jpg|500px|frameless|thumb]]<br>
The proximity sensor which is completely adjusted can detect 100 mm object, and exempt the factory calibration requirements of terminal equipment as well as sub-components. From the bright sunlight to the dark room, proximity sensor’s proximity detection function can operate well. This module added micro optical lens can provide infrared energy efficient transmission and reception, which can reduce the overall power consumption. In addition, its internal state machine can make the device into a low power mode, bringing a very low average power consumption.isconnected normally.
 


<br>
==Performance Parameters==
==Performance Parameters==
*Working Voltage:DC 3.3-3.8V
*Working Voltage:DC 3.3-3.8V
* Output Current:0-20mA
*Output Current:0-20mA
* Temperature Range:-40℃—85℃
*Temperature Range:-40℃ to +85℃


<br>
==Features ==
==Features ==
* Optical module integrated with ALS, infrared LED and proximity detector;
* Optical module integrated with ALS, infrared LED and proximity detector;
Line 29: Line 36:
* Sleep mode power - 2.2μA (typical value).
* Sleep mode power - 2.2μA (typical value).


<br>
==Connection Diagram ==
==Connection Diagram ==
<br>[[File:KS0267.png|500px|frameless|thumb]]<br>
<br>[[File:KS0267.png|700px|frameless|thumb]]<br>


<br>
==Sample Code==
==Sample Code==
<br>
'''Libraries Download of Wire and APDS9930:''' [http://www.keyestudio.com/files/index/download/id/1505456458/]
<br>
* Hardware Connections:<br>
<span style=color:red> IMPORTANT: The APDS-9960 can only accept 3.3V!<br>
Arduino Pin  APDS-9960 Board  Function  <br>
3.3V    -    VCC      -      Power  <br>
GND    -    GND      -      Ground  <br>
A4      -    SDA      -    I2C Data  <br>
A5      -    SCL      -      I2C Clock  <br>
2      -    INT      -      Interrupt  <br>
13      -    -        -      LED  <br>
* Resources: <br>
Include Wire.h and SparkFun_APDS-9960.h <br>
Development environment specifics:<br>
Written in Arduino 1.5.6 
<br>
<pre>
<pre>
#define DUMP_REGS
#include <Wire.h>
#include <Wire.h>
#include <APDS9930.h>
#include <SparkFun_APDS9960.h>
 
// Pins
// Pins
#define APDS9930_INT   2  // Needs to be an interrupt pin
#define APDS9960_INT   2  // Needs to be an interrupt pin
#define LED_PIN        13 // LED for showing interrupt
#define LED_PIN        13 // LED for showing interrupt
// Constants
// Constants
#define PROX_INT_HIGH  600 // Proximity level for interrupt
#define LIGHT_INT_HIGH  1000 // High light level for interrupt
#define PROX_INT_LOW    0  // No far interrupt
#define LIGHT_INT_LOW  10  // Low light level for interrupt
 
// Global variables
// Global variables
APDS9930 apds = APDS9930();
SparkFun_APDS9960 apds = SparkFun_APDS9960();
float ambient_light = 0; // can also be an unsigned long
uint16_t ambient_light = 0;
uint16_t ch0 = 0;
uint16_t red_light = 0;
uint16_t ch1 = 1;
uint16_t green_light = 0;
uint16_t proximity_data = 0;
uint16_t blue_light = 0;
volatile bool isr_flag = false;
int isr_flag = 0;
void setup() {
uint16_t threshold = 0;
// Set LED as output
pinMode(LED_PIN, OUTPUT);
pinMode(APDS9930_INT, INPUT);
// Initialize Serial port
Serial.begin(9600);
Serial.println();
Serial.println(F("------------------------------"));
Serial.println(F("APDS-9930 - ProximityInterrupt"));
Serial.println(F("------------------------------"));
// Initialize interrupt service routine
attachInterrupt(digitalPinToInterrupt(APDS9930_INT), interruptRoutine, FALLING);
// Initialize APDS-9930 (configure I2C and initial values)
if (apds.init()) {
Serial.println(F("APDS-9930 initialization complete"));
}
else {
Serial.println(F("Something went wrong during APDS-9930 init!"));
}
// Adjust the Proximity sensor gain
if (!apds.setProximityGain(PGAIN_2X)) {
Serial.println(F("Something went wrong trying to set PGAIN"));
}
// Set proximity interrupt thresholds
if (!apds.setProximityIntLowThreshold(PROX_INT_LOW)) {
Serial.println(F("Error writing low threshold"));
}
if (!apds.setProximityIntHighThreshold(PROX_INT_HIGH)) {
Serial.println(F("Error writing high threshold"));
}
// Start running the APDS-9930 proximity sensor (interrupts)
if (apds.enableProximitySensor(true)) {
Serial.println(F("Proximity sensor is now running"));
}
else {
Serial.println(F("Something went wrong during sensor init!"));
}
// Start running the APDS-9930 light sensor (no interrupts)
if (apds.enableLightSensor(false)) {
Serial.println(F("Light sensor is now running"));
}
else {
Serial.println(F("Something went wrong during light sensor init!"));
}
#ifdef DUMP_REGS
/* Register dump */
uint8_t reg;
uint8_t val;
for (reg = 0x00; reg <= 0x19; reg++) {
if ((reg != 0x10) && \
(reg != 0x11))
{
apds.wireReadDataByte(reg, val);
Serial.print(reg, HEX);
Serial.print(": 0x");
Serial.println(val, HEX);
}
}
apds.wireReadDataByte(0x1E, val);
Serial.print(0x1E, HEX);
Serial.print(": 0x");
Serial.println(val, HEX);
#endif


void setup() {
  // Set LED as output
  pinMode(LED_PIN, OUTPUT);
  pinMode(APDS9960_INT, INPUT);
  // Initialize Serial port
  Serial.begin(9600);
  Serial.println();
  Serial.println(F("-------------------------------------"));
  Serial.println(F("SparkFun APDS-9960 - Light Interrupts"));
  Serial.println(F("-------------------------------------"));
  // Initialize interrupt service routine
  attachInterrupt(0, interruptRoutine, FALLING);
  // Initialize APDS-9960 (configure I2C and initial values)
  if ( apds.init() ) {
    Serial.println(F("APDS-9960 initialization complete"));
  } else {
    Serial.println(F("Something went wrong during APDS-9960 init!"));
  }
  // Set high and low interrupt thresholds
  if ( !apds.setLightIntLowThreshold(LIGHT_INT_LOW) ) {
    Serial.println(F("Error writing low threshold"));
  }
  if ( !apds.setLightIntHighThreshold(LIGHT_INT_HIGH) ) {
    Serial.println(F("Error writing high threshold"));
  }
  // Start running the APDS-9960 light sensor (no interrupts)
  if ( apds.enableLightSensor(false) ) {
    Serial.println(F("Light sensor is now running"));
  } else {
    Serial.println(F("Something went wrong during light sensor init!"));
  }
  // Read high and low interrupt thresholds
  if ( !apds.getLightIntLowThreshold(threshold) ) {
    Serial.println(F("Error reading low threshold"));
  } else {
    Serial.print(F("Low Threshold: "));
    Serial.println(threshold);
  }
  if ( !apds.getLightIntHighThreshold(threshold) ) {
    Serial.println(F("Error reading high threshold"));
  } else {
    Serial.print(F("High Threshold: "));
    Serial.println(threshold);
  }
  // Enable interrupts
  if ( !apds.setAmbientLightIntEnable(1) ) {
    Serial.println(F("Error enabling interrupts"));
  }
  // Wait for initialization and calibration to finish
  delay(500);
}
}
void loop() {
void loop() {  
// If interrupt occurs, print out the proximity level
  // If interrupt occurs, print out the light levels
if (isr_flag) {
  if ( isr_flag == 1 ) {
// Read proximity level and print it out
   
if (!apds.readProximity(proximity_data)) {
    // Read the light levels (ambient, red, green, blue) and print
Serial.println("Error reading proximity value");
    if ( !apds.readAmbientLight(ambient_light) ||
}
          !apds.readRedLight(red_light) ||
else {
          !apds.readGreenLight(green_light) ||
Serial.print("Proximity detected! Level: ");
          !apds.readBlueLight(blue_light) ) {
Serial.print(proximity_data);
      Serial.println("Error reading light values");
Serial.print("  ");
    } else {
}
      Serial.print("Interrupt! Ambient: ");
// Read the light levels (ambient, red, green, blue)
      Serial.print(ambient_light);
if (!apds.readAmbientLightLux(ambient_light) ||
      Serial.print(" R: ");
!apds.readCh0Light(ch0) ||
      Serial.print(red_light);
!apds.readCh1Light(ch1)) {
      Serial.print(" G: ");
Serial.println(F("Error reading light values"));
      Serial.print(green_light);
}
      Serial.print(" B: ");
else {
      Serial.println(blue_light);
Serial.print(F("Ambient: "));
    }
Serial.print(ambient_light);
    // Turn on LED for a half a second
Serial.print(F(" Ch0: "));
    digitalWrite(LED_PIN, HIGH);
Serial.print(ch0);
    delay(500);
Serial.print(F(" Ch1: "));
    digitalWrite(LED_PIN, LOW);
Serial.println(ch1);
   
}
    // Reset flag and clear APDS-9960 interrupt (IMPORTANT!)
// Turn on LED for a half a second
    isr_flag = 0;
digitalWrite(LED_PIN, HIGH);
    if ( !apds.clearAmbientLightInt() ) {
delay(300);
      Serial.println("Error clearing interrupt");
digitalWrite(LED_PIN, LOW);
    }
// Reset flag and clear APDS-9930 interrupt (IMPORTANT!)
  }
isr_flag = false;
if (!apds.clearProximityInt()) {
Serial.println("Error clearing interrupt");
}
}
}
}
void interruptRoutine() {
void interruptRoutine() {
isr_flag = true;
  isr_flag = 1;
}
}
</pre>
</pre>
<br>


==Test Result==
==Test Result==
Wiring as the above diagram and burning the code, after power-on, open the serial monitor, as the graph shown below.
Wiring as the above diagram and burning the code, after powered-on, open the serial monitor, as the graph shown below.<br>
 
<br>[[File:KS0267-3.png|600px|frameless|thumb]]<br>
<br>[[File:KS0267-.png|500px|frameless|thumb]]<br>




<br>
==Resources ==
==Resources ==


'''Datasheet:'''
* '''Libraries and Code Download:'''   <br>
http://www.keyestudio.com/files/index/download/id/1500520185/
https://fs.keyestudio.com/KS0267


'''Libraries Download:'''
<br>


==Buy from ==
==Buy from ==
http://www.keyestudio.com/keyestudio-apds-9930-attitude-sensor-module.html


[[category:Module]]
*[https://www.keyestudio.com/keyestudio-apds-9930-attitude-sensor-module-for-arduino-p0377-p0377.html    '''Official Website''' ]
 
*[https://www.aliexpress.com/store/product/Keyestudio-APDS-9930-Attitude-Sensor-Module-for-Arduino/1452162_32823142352.html    '''Aliexpress store''' ]
 
*[https://www.amazon.com/dp/B07F1R4HJ1  '''Shop on amazon store''' ]
 
 
[[Category:Module]]

Latest revision as of 16:52, 8 January 2021


Keyestudio APDS-9930 Attitude Sensor Module


thumb


Introduction

Keyestudio APDS-9930 attitude sensor module mainly uses APDS-9930 chip. APDS-9930 in a single 8 pin package can provide the ambient light sensor which is compatible with I2C interface and the infrared LED proximity sensor.
The ambient light sensor uses double light diode to approximate the visual response of low lumen human under 0.01 lux illumination, and its high sensitivity allows the device to operate in the dark glass.
The proximity sensor which is completely adjusted can detect 100 mm object, and exempt the factory calibration requirements of terminal equipment as well as sub-components. From the bright sunlight to the dark room, proximity sensor’s proximity detection function can operate well.
This module added micro optical lens can provide infrared energy efficient transmission and reception, which can reduce the overall power consumption. In addition, its internal state machine can make the device into a low power mode, bringing a very low average power consumption.


thumb


Performance Parameters

  • Working Voltage:DC 3.3-3.8V
  • Output Current:0-20mA
  • Temperature Range:-40℃ to +85℃


Features

  • Optical module integrated with ALS, infrared LED and proximity detector;
  • Ambient Light Sensing,similar to the human eye’s visual response;  
  • Programmable interruption function with upper and lower thresholds;
  • Up to 16-bit resolution;
  • High sensitivity of operation in the back of dark glass;
  • 0.01lux low lumen performance;
  • Proximity detection, fully calibrated to 100 mm detection;
  • Integrate infrared LED and synchronous LED driver;
  • Eliminate factory calibration for proximity sensors;
  • Programmable waiting timer, waiting state’s power consumption - 90μA (typical value);
  • Programmable range is from 2.7 milliseconds to 8 seconds;
  • Compatible with I2C interface, up to 400kHz (I2C fast mode);
  • Dedicated interruption pin;
  • Sleep mode power - 2.2μA (typical value).


Connection Diagram


thumb


Sample Code


Libraries Download of Wire and APDS9930: [1]

  • Hardware Connections:

IMPORTANT: The APDS-9960 can only accept 3.3V!

Arduino Pin APDS-9960 Board Function

3.3V - VCC - Power
GND - GND - Ground
A4 - SDA - I2C Data
A5 - SCL - I2C Clock
2 - INT - Interrupt
13 - - - LED

  • Resources:

Include Wire.h and SparkFun_APDS-9960.h

Development environment specifics:
Written in Arduino 1.5.6

#include <Wire.h>
#include <SparkFun_APDS9960.h>

// Pins
#define APDS9960_INT    2  // Needs to be an interrupt pin
#define LED_PIN         13 // LED for showing interrupt

// Constants
#define LIGHT_INT_HIGH  1000 // High light level for interrupt
#define LIGHT_INT_LOW   10   // Low light level for interrupt

// Global variables
SparkFun_APDS9960 apds = SparkFun_APDS9960();
uint16_t ambient_light = 0;
uint16_t red_light = 0;
uint16_t green_light = 0;
uint16_t blue_light = 0;
int isr_flag = 0;
uint16_t threshold = 0;

void setup() { 
  // Set LED as output
  pinMode(LED_PIN, OUTPUT);
  pinMode(APDS9960_INT, INPUT);
  // Initialize Serial port
  Serial.begin(9600);
  Serial.println();
  Serial.println(F("-------------------------------------"));
  Serial.println(F("SparkFun APDS-9960 - Light Interrupts"));
  Serial.println(F("-------------------------------------"));
  // Initialize interrupt service routine
  attachInterrupt(0, interruptRoutine, FALLING);
  // Initialize APDS-9960 (configure I2C and initial values)
  if ( apds.init() ) {
    Serial.println(F("APDS-9960 initialization complete"));
  } else {
    Serial.println(F("Something went wrong during APDS-9960 init!"));
  }
  // Set high and low interrupt thresholds
  if ( !apds.setLightIntLowThreshold(LIGHT_INT_LOW) ) {
    Serial.println(F("Error writing low threshold"));
  }
  if ( !apds.setLightIntHighThreshold(LIGHT_INT_HIGH) ) {
    Serial.println(F("Error writing high threshold"));
  }
  // Start running the APDS-9960 light sensor (no interrupts)
  if ( apds.enableLightSensor(false) ) {
    Serial.println(F("Light sensor is now running"));
  } else {
    Serial.println(F("Something went wrong during light sensor init!"));
  }
  // Read high and low interrupt thresholds
  if ( !apds.getLightIntLowThreshold(threshold) ) {
    Serial.println(F("Error reading low threshold"));
  } else {
    Serial.print(F("Low Threshold: "));
    Serial.println(threshold);
  }
  if ( !apds.getLightIntHighThreshold(threshold) ) {
    Serial.println(F("Error reading high threshold"));
  } else {
    Serial.print(F("High Threshold: "));
    Serial.println(threshold);
  }
  // Enable interrupts
  if ( !apds.setAmbientLightIntEnable(1) ) {
    Serial.println(F("Error enabling interrupts"));
  }
  // Wait for initialization and calibration to finish
  delay(500);
}
void loop() { 
  // If interrupt occurs, print out the light levels
  if ( isr_flag == 1 ) {
    
    // Read the light levels (ambient, red, green, blue) and print
    if (  !apds.readAmbientLight(ambient_light) ||
          !apds.readRedLight(red_light) ||
          !apds.readGreenLight(green_light) ||
          !apds.readBlueLight(blue_light) ) {
      Serial.println("Error reading light values");
    } else {
      Serial.print("Interrupt! Ambient: ");
      Serial.print(ambient_light);
      Serial.print(" R: ");
      Serial.print(red_light);
      Serial.print(" G: ");
      Serial.print(green_light);
      Serial.print(" B: ");
      Serial.println(blue_light);
    }  
    // Turn on LED for a half a second
    digitalWrite(LED_PIN, HIGH);
    delay(500);
    digitalWrite(LED_PIN, LOW);
    
    // Reset flag and clear APDS-9960 interrupt (IMPORTANT!)
    isr_flag = 0;
    if ( !apds.clearAmbientLightInt() ) {
      Serial.println("Error clearing interrupt");
    }  
  }
}
void interruptRoutine() {
  isr_flag = 1;
}


Test Result

Wiring as the above diagram and burning the code, after powered-on, open the serial monitor, as the graph shown below.

thumb



Resources

  • Libraries and Code Download:

https://fs.keyestudio.com/KS0267


Buy from