Ks0067 keyestudio RC522 RFID Module for Arduino: Difference between revisions

From Keyestudio Wiki
Jump to navigation Jump to search
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
==RC522 RFID module for arduino==
<br>
<br>[[File:ks0067-1.png|500px|frameless|thumb]]<br>
==RC522 RFID Module Kit for Arduino==
<br>[[File:Ks0067-4.png|500px|frameless|thumb]]<br>
 
<br>


==Introduction==
==Introduction==
MF522-AN module adopts Philips MFRC522 original reader circuit chip design, easy to use, low cost, suitable for equipment development, development of advanced applications such reader users, the need for RF card terminal design / production of the user. This module can be loaded directly into a variety of readers molds. Module uses voltage of 3.3V, through the SPI interface simple few lines can be directly connected to the user any CPU board communication module can guarantee stable and reliable work, reader distance<br>
MRC522 RFID module adopts Philips MFRC522 original reader circuit chip design, easy to use, low cost, suitable for equipment development, development of advanced applications, the need for RF card terminal design/production. <br>
This module can be loaded directly into a variety of readers molds. Module uses voltage of 3.3V, and can be directly connected to any CPU boards for communication through the SPI interface using simple few lines, which can guarantee stable and reliable reader distance. <br>
<br>[[File:Ks0067-1-1.png|400px|frameless|thumb]]<br>


<br>


==Electrical Parameters  ==
==Electrical Parameters  ==
* Current :13-26mA / DC 3.3V
* Current: 13-26mA / DC 3.3V
* Idle Current :10-13mA / DC 3.3V
* Idle Current: 10-13mA / DC 3.3V
* Sleep current: <80uA
* Sleep current: <80uA
* Peak current: <30mA
* Peak current: <30mA
* Operating Frequency: 13.56MHz
* Operating Frequency: 13.56MHz
* Supported card types: mifare1 S50, mifare1 S70, mifare UltraLight, mifare Pro, mifare Desfire
* Supported card types: mifare1 S50, mifare1 S70, and more
* ×60mm mce_style="BACKGROUND-COLOR: #fff">Product Physical Characteristics: Dimensions: 40mm × 60mm
* Environmental Operating temperature: -20 to 80 degrees Celsius
* Environmental Operating temperature: -20 to 80 degrees Celsius
* Environment Storage temperature: -40 to 85 degrees Celsius
* Environment Storage temperature: -40 to 85 degrees Celsius
* Relative Humidity: 5% -95%
* Relative Humidity: 5% to 95%


<br>
== PINOUTS ==
<br>[[File:Ks0067-2-1.png|600px|frameless|thumb]]<br>
<br>
==Connection Diagram ==
==Connection Diagram ==
<br>[[File:ks0067-2.png|500px|frameless|thumb]]<br>
<br>[[File:RFID-2.jpg|600px|frameless|thumb]]<br>
 
<br>


==Sample Code==
==Sample Code==
'''Get the Libraries of SPI:''' [http://www.keyestudio.com/files/index/download/id/1507619571/]
*[http://www.keyestudio.com/files/index/download/id/1507619571/   '''Get the Libraries of SPI''']
'''Download the test code:''' [http://www.keyestudio.com/files/index/download/id/1507619572/]  Or you can directly copy the code as below.
*[http://www.keyestudio.com/files/index/download/id/1507619572/   '''Download the test code''' ]  Or you can directly copy the code as below.<br>
 
<pre>
<pre>
#include <SPI.h>
#include <SPI.h>
Line 651: Line 664:
</pre>
</pre>


<br>
== Test Phenomenon ==
== Test Phenomenon ==
In this experiment, when the IC card gets close, RFID module writes data into the IC card, then reads out the data and displays it on the monitor window. As below picture shown:  <br>
In this experiment, when the IC card gets close, RFID module writes data into the IC card, then reads out the data and displays it on the monitor window. As below picture shown:  <br>
<br>[[File:ks0077 32-5.png|500px|frameless|thumb]]<br>
<br>[[File:ks0077 32-5.png|800px|frameless|thumb]]<br>
 
 
<br>


== Shipping List ==
* RC522 RFID Module for Arduino x 1
* White access card x 1
* Blue key chain x 1


<br>[[File:Ks0067-5.png|600px|frameless|thumb]]<br>
<br>
==Resources ==
==Resources ==
'''Download the Libraries of SPI'''


http://www.keyestudio.com/files/index/download/id/1507619571/
* '''Download the Test Code and libraries SPI'''<br>
https://fs.keyestudio.com/KS0067


'''Download the Test Code'''
* '''Video'''<br>
http://video.keyestudio.com/ks0067/


http://www.keyestudio.com/files/index/download/id/1507619572/


'''Video'''
<br>


http://www.keyestudio.com/wp/2016/05/ks0067-keyestudio-rc522-rfid-module/
==Buy from ==


'''Datasheet'''
*[https://www.keyestudio.com/free-shippingkeyestudio-mfrc522-rfid-s50-fudan-card-ic-card-module-with-spi-port-for-arduino-uno-r3-mega-2560-r3-p0200.html    '''Official Website''']
*[https://www.amazon.com/Keyestudio-RC522-module-arduino-raspberry/dp/B016KE9D2U/    '''Amazon Store''']


http://www.keyestudio.com/files/index/download/id/1463721331/
*[https://www.aliexpress.com/store/product/Free-shipping-RFID-module-Kits-RC522-RFID-SPI-Write-Read-for-uno-2560/1452162_2053355396.html?spm=2114.12010612.8148356.29.373a1ad1iDXhmG    '''Aliexpress Store''']


==Buy from ==


https://www.amazon.com/Keyestudio-RC522-module-arduino-raspberry/dp/B016KE9D2U/ref=sr_1_1?ie=UTF8&qid=1487128410&sr=8-1&keywords=keyestudio+RC522+RFID+module


http://www.keyestudio.com/keyestudio-rc522-rfid-module-for-arduino.html
[[category:Module]]
[[category:Module]]

Latest revision as of 10:42, 8 January 2021


RC522 RFID Module Kit for Arduino


thumb


Introduction

MRC522 RFID module adopts Philips MFRC522 original reader circuit chip design, easy to use, low cost, suitable for equipment development, development of advanced applications, the need for RF card terminal design/production.
This module can be loaded directly into a variety of readers molds. Module uses voltage of 3.3V, and can be directly connected to any CPU boards for communication through the SPI interface using simple few lines, which can guarantee stable and reliable reader distance.

thumb


Electrical Parameters

  • Current: 13-26mA / DC 3.3V
  • Idle Current: 10-13mA / DC 3.3V
  • Sleep current: <80uA
  • Peak current: <30mA
  • Operating Frequency: 13.56MHz
  • Supported card types: mifare1 S50, mifare1 S70, and more
  • Environmental Operating temperature: -20 to 80 degrees Celsius
  • Environment Storage temperature: -40 to 85 degrees Celsius
  • Relative Humidity: 5% to 95%


PINOUTS


thumb


Connection Diagram


thumb


Sample Code

#include <SPI.h>
#define	uchar	unsigned char
#define	uint	unsigned int
#define MAX_LEN 16
const int chipSelectPin = 10;//if the controller is UNO,328,168
const int NRSTPD = 5;

//MF522command word
#define PCD_IDLE              0x00               //NO action; cancel current command
#define PCD_AUTHENT           0x0E               //verify key
#define PCD_RECEIVE           0x08               //receive data

#define PCD_TRANSMIT          0x04               //send data
#define PCD_TRANSCEIVE        0x0C               //receive and send data
#define PCD_RESETPHASE        0x0F               //reset
#define PCD_CALCCRC           0x03               //CRC calculation

//Mifare_One Card command word
#define PICC_REQIDL           0x26               // line-tracking area is dormant #define PICC_REQALL           0x52                     //line-tracking area is interfered
#define PICC_ANTICOLL         0x93               //Anti collision
#define PICC_SElECTTAG        0x93               //choose cards
#define PICC_AUTHENT1A        0x60               //Verify A key
#define PICC_AUTHENT1B        0x61               //Verify B key
#define PICC_READ             0x30               // Reader Module 
#define PICC_WRITE            0xA0               // letter block

#define PICC_DECREMENT        0xC0               
#define PICC_INCREMENT        0xC1               
#define PICC_RESTORE          0xC2               //Transfer data to buffer
#define PICC_TRANSFER         0xB0               //Save buffer data
#define PICC_HALT             0x50               //Dormancy


//MF522 Error code returned when communication
#define MI_OK                 0
#define MI_NOTAGERR           1
#define MI_ERR                2


//------------------MFRC522 Register---------------
//Page 0:Command and Status
#define     Reserved00            0x00    
#define     CommandReg            0x01    
#define     CommIEnReg            0x02    
#define     DivlEnReg             0x03    
#define     CommIrqReg            0x04    
#define     DivIrqReg             0x05
#define     ErrorReg              0x06    
#define     Status1Reg            0x07    
#define     Status2Reg            0x08    
#define     FIFODataReg           0x09
#define     FIFOLevelReg          0x0A

#define     WaterLevelReg         0x0B
#define     ControlReg            0x0C
#define     BitFramingReg         0x0D
#define     CollReg               0x0E
#define     Reserved01            0x0F
//Page 1:Command     
#define     Reserved10            0x10
#define     ModeReg               0x11
#define     TxModeReg             0x12
#define     RxModeReg             0x13
#define     TxControlReg          0x14
#define     TxAutoReg             0x15
#define     TxSelReg              0x16
#define     RxSelReg              0x17
#define     RxThresholdReg        0x18
#define     DemodReg              0x19

#define     Reserved11            0x1A
#define     Reserved12            0x1B
#define     MifareReg             0x1C
#define     Reserved13            0x1D
#define     Reserved14            0x1E
#define     SerialSpeedReg        0x1F
//Page 2:CFG    
#define     Reserved20            0x20  
#define     CRCResultRegM         0x21
#define     CRCResultRegL         0x22
#define     Reserved21            0x23
#define     ModWidthReg           0x24
#define     Reserved22            0x25
#define     RFCfgReg              0x26
#define     GsNReg                0x27
#define     CWGsPReg	          0x28
#define     ModGsPReg             0x29
#define     TModeReg              0x2A
#define     TPrescalerReg         0x2B
#define     TReloadRegH           0x2C
#define     TReloadRegL           0x2D
#define     TCounterValueRegH     0x2E
#define     TCounterValueRegL     0x2F
//Page 3:TestRegister     
#define     Reserved30            0x30

#define     TestSel1Reg           0x31
#define     TestSel2Reg           0x32
#define     TestPinEnReg          0x33
#define     TestPinValueReg       0x34
#define     TestBusReg            0x35
#define     AutoTestReg           0x36
#define     VersionReg            0x37
#define     AnalogTestReg         0x38
#define     TestDAC1Reg           0x39  
#define     TestDAC2Reg           0x3A   
#define     TestADCReg            0x3B   
#define     Reserved31            0x3C   
#define     Reserved32            0x3D   
#define     Reserved33            0x3E   
#define     Reserved34			  0x3F
uchar serNum[5];
uchar  writeDate[16] ={'T', 'e', 'n', 'g', ' ', 'B', 'o', 0, 0, 0, 0, 0, 0, 0, 0,0};

uchar sectorKeyA[16][16] = {{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
                             {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
                             {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
                            };
 uchar sectorNewKeyA[16][16] = {{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
                                {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xff,0x07,0x80,0x69, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
                                {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xff,0x07,0x80,0x69, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
                               };

void setup() {                
   Serial.begin(9600);                       // RFID reader SOUT pin connected to Serial RX pin at 2400bps 
 // start the SPI library:
  SPI.begin();
  
  pinMode(chipSelectPin,OUTPUT);             // Set digital pin 10 as OUTPUT to connect it to the RFID /ENABLE pin 
    digitalWrite(chipSelectPin, LOW);          // Activate the RFID reader
  pinMode(NRSTPD,OUTPUT);               // Set digital pin 10 , Not Reset and Power-down
digitalWrite(NRSTPD, HIGH);


  MFRC522_Init();  
}

void loop()
{
  	uchar i,tmp;
	uchar status;
        uchar str[MAX_LEN];
        uchar RC_size;
        uchar blockAddr;	//Select the address of the operation 0~63


		// searching card, return card type	
		status = MFRC522_Request(PICC_REQIDL, str);	
		if (status == MI_OK)
		{
		}

		
		status = MFRC522_Anticoll(str);
		memcpy(serNum, str, 5);
		if (status == MI_OK)
		{
                        Serial.println("The card's number is  : ");
			Serial.print(serNum[0],BIN);
			Serial.print(serNum[1],BIN);
			Serial.print(serNum[2],BIN);
			Serial.print(serNum[3],BIN);
			Serial.print(serNum[4],BIN);
                        Serial.println(" ");
		}

		// select card, return card capacity
		RC_size = MFRC522_SelectTag(serNum);
		if (RC_size != 0)
		{}
                
		// write data card
		blockAddr = 7;		// data block 7		
		status = MFRC522_Auth(PICC_AUTHENT1A, blockAddr, sectorKeyA[blockAddr/4], serNum);	// authentication 
		if (status == MI_OK)

		{
			// write data
			status = MFRC522_Write(blockAddr, sectorNewKeyA[blockAddr/4]);
                        Serial.print("set the new card password, and can modify the data of the Sector: ");
                        Serial.print(blockAddr/4,DEC);
   
                        // write data
                        blockAddr = blockAddr - 3 ; 
                        status = MFRC522_Write(blockAddr, writeDate);
                        if(status == MI_OK)
                        {
                           Serial.println("OK!");
                        }
		}

		// read card
		blockAddr = 7;		// data block 7		
		status = MFRC522_Auth(PICC_AUTHENT1A, blockAddr, 

sectorNewKeyA[blockAddr/4], serNum);	// authentication 
		if (status == MI_OK)
		{
			// read data
                        blockAddr = blockAddr - 3 ; 
                        status = MFRC522_Read(blockAddr, str);
			if (status == MI_OK)
			{
                                Serial.println("Read from the card ,the data is : ");
				for (i=0; i<16; i++)
				{
              			      Serial.print(str[i]);
				}
                                Serial.println(" ");
			}
		}
                Serial.println(" ");
		MFRC522_Halt();			// command card into sleeping mode              
          
}

void Write_MFRC522(uchar addr, uchar val)

{
	digitalWrite(chipSelectPin, LOW);

	SPI.transfer((addr<<1)&0x7E);	
	SPI.transfer(val);
	
	digitalWrite(chipSelectPin, HIGH);
}


uchar Read_MFRC522(uchar addr)
{
	uchar val;

	digitalWrite(chipSelectPin, LOW);

	//address format: 1XXXXXX0
	SPI.transfer(((addr<<1)&0x7E) | 0x80);	
	val =SPI.transfer(0x00);
	

	digitalWrite(chipSelectPin, HIGH);
	
	return val;	
}


void SetBitMask(uchar reg, uchar mask)  
{
    uchar tmp;
    tmp = Read_MFRC522(reg);
    Write_MFRC522(reg, tmp | mask);  // set bit mask
}



void ClearBitMask(uchar reg, uchar mask)  
{
    uchar tmp;
    tmp = Read_MFRC522(reg);
    Write_MFRC522(reg, tmp & (~mask));  // clear bit mask
} 

void AntennaOn(void)
{
	uchar temp;

	temp = Read_MFRC522(TxControlReg);
	if (!(temp & 0x03))
	{
		SetBitMask(TxControlReg, 0x03);
	}
}

void AntennaOff(void)
{
	ClearBitMask(TxControlReg, 0x03);
}

void MFRC522_Reset(void)
{

    Write_MFRC522(CommandReg, PCD_RESETPHASE);
}

void MFRC522_Init(void)
{
	digitalWrite(NRSTPD,HIGH);

	MFRC522_Reset();
	 	
	//Timer: TPrescaler*TreloadVal/6.78MHz = 24ms
    Write_MFRC522(TModeReg, 0x8D);		//Tauto=1; f(Timer) = 6.78MHz/TPreScaler
    Write_MFRC522(TPrescalerReg, 0x3E);	//TModeReg[3..0] + TPrescalerReg
    Write_MFRC522(TReloadRegL, 30);           
    Write_MFRC522(TReloadRegH, 0);
	
	Write_MFRC522(TxAutoReg, 0x40);		//100%ASK
	Write_MFRC522(ModeReg, 0x3D);		//CRC original value 0x6363	???

	AntennaOn();		// open antenna 
}
uchar MFRC522_Request(uchar reqMode, uchar *TagType)
{
	uchar status;  

	uint backBits;			// bits of data received
	Write_MFRC522(BitFramingReg, 0x07);		//TxLastBists = BitFramingReg[2..0]	???
	
	TagType[0] = reqMode;
	status = MFRC522_ToCard(PCD_TRANSCEIVE, TagType, 1, TagType, &backBits);

	if ((status != MI_OK) || (backBits != 0x10))
	{    
		status = MI_ERR;
	}
   
	return status;
}

uchar MFRC522_ToCard(uchar command, uchar *sendData, uchar sendLen, uchar *backData, uint *backLen)
{
    uchar status = MI_ERR;
uchar irqEn = 0x00;

    uchar waitIRq = 0x00;
    uchar lastBits;
    uchar n;
    uint i;

    switch (command)
    {
        case PCD_AUTHENT:		// card key authentication 
		{
			irqEn = 0x12;
			waitIRq = 0x10;
			break;
		}
		case PCD_TRANSCEIVE:	// send data in FIFO
		{
			irqEn = 0x77;
			waitIRq = 0x30;
			break;
		}
		default:
			break;
    }
   
    Write_MFRC522(CommIEnReg, irqEn|0x80);	// permission for interrupt request
    ClearBitMask(CommIrqReg, 0x80);			// clear all bits of the interrupt request 
    SetBitMask(FIFOLevelReg, 0x80);			//FlushBuffer=1, FIFO initialize
    
	Write_MFRC522(CommandReg, PCD_IDLE);	//NO action; clear current command	???

	// write data into FIFO
    for (i=0; i<sendLen; i++)
    {   
		Write_MFRC522(FIFODataReg, sendData[i]);    
	}

	// execute command 
	Write_MFRC522(CommandReg, command);
    if (command == PCD_TRANSCEIVE)
    {    
		SetBitMask(BitFramingReg, 0x80);		//StartSend=1,transmission of data starts  
	}   

    
	// wait for the completion of data transmission
	i = 2000;	// adjust i according to clock frequency, max wait time for M1 card operation 25ms	???
    do 
    {
		//CommIrqReg[7..0]
		//Set1 TxIRq RxIRq IdleIRq HiAlerIRq LoAlertIRq ErrIRq TimerIRq
        n = Read_MFRC522(CommIrqReg);
        i--;
    }
    while ((i!=0) && !(n&0x01) && !(n&waitIRq));

    ClearBitMask(BitFramingReg, 0x80);			//StartSend=0
	
    if (i != 0)
    {    
        if(!(Read_MFRC522(ErrorReg) & 0x1B))	//BufferOvfl Collerr CRCErr ProtecolErr
        {
            status = MI_OK;
            if (n & irqEn & 0x01)
            {   
				status = MI_NOTAGERR;			//??   

			}

            if (command == PCD_TRANSCEIVE)
            {
               	n = Read_MFRC522(FIFOLevelReg);
              	lastBits = Read_MFRC522(ControlReg) & 0x07;
                if (lastBits)
                {   
					*backLen = (n-1)*8 + lastBits;   
				}
                else
                {   
					*backLen = n*8;   
				}

                if (n == 0)
                {   
					n = 1;    
				}
                if (n > MAX_LEN)

                {   
					n = MAX_LEN;   
				}
				
				// read the data received in FIFO
                for (i=0; i<n; i++)
                {   
					backData[i] = Read_MFRC522(FIFODataReg);    
				}
            }
        }
        else
        {   
			status = MI_ERR;  
		}
        
    }
	
    //SetBitMask(ControlReg,0x80);           //timer stops
    //Write_MFRC522(CommandReg, PCD_IDLE); 


    return status;
}

uchar MFRC522_Anticoll(uchar *serNum)
{
    uchar status;
    uchar i;
	uchar serNumCheck=0;
    uint unLen;
    
	Write_MFRC522(BitFramingReg, 0x00);		//TxLastBists = BitFramingReg[2..0]
 
    serNum[0] = PICC_ANTICOLL;
    serNum[1] = 0x20;
    status = MFRC522_ToCard(PCD_TRANSCEIVE, serNum, 2, serNum, &unLen);

    if (status == MI_OK)
	{
		// verify card sequence number
		for (i=0; i<4; i++)
		{   

		 	serNumCheck ^= serNum[i];
		}
		if (serNumCheck != serNum[i])
		{   
			status = MI_ERR;    
		}
    }

    //SetBitMask(CollReg, 0x80);		//ValuesAfterColl=1

    return status;
} 

void CalulateCRC(uchar *pIndata, uchar len, uchar *pOutData)
{
    uchar i, n;

    ClearBitMask(DivIrqReg, 0x04);			//CRCIrq = 0
    SetBitMask(FIFOLevelReg, 0x80);			// clear FIFO pointer
    //Write_MFRC522(CommandReg, PCD_IDLE);

	// write data into FIFO	
    for (i=0; i<len; i++)
    {   
		Write_MFRC522(FIFODataReg, *(pIndata+i));   
	}
    Write_MFRC522(CommandReg, PCD_CALCCRC);

	// wait for completion of CRC calculation 
    i = 0xFF;
    do 
    {
        n = Read_MFRC522(DivIrqReg);
        i--;
    }
    while ((i!=0) && !(n&0x04));			//CRCIrq = 1

	// read result from CRC calculation
    pOutData[0] = Read_MFRC522(CRCResultRegL);
    pOutData[1] = Read_MFRC522(CRCResultRegM);
}


uchar MFRC522_SelectTag(uchar *serNum)
{
    uchar i;
	uchar status;
	uchar size;
    uint recvBits;
    uchar buffer[9]; 

	//ClearBitMask(Status2Reg, 0x08);			//MFCrypto1On=0

    buffer[0] = PICC_SElECTTAG;
    buffer[1] = 0x70;
    for (i=0; i<5; i++)
    {
    	buffer[i+2] = *(serNum+i);
    }
	CalulateCRC(buffer, 7, &buffer[7]);		//??
    status = MFRC522_ToCard(PCD_TRANSCEIVE, buffer, 9, buffer, &recvBits);
    
if ((status == MI_OK) && (recvBits == 0x18))

    {   
		size = buffer[0]; 
	}
    else
    {   
		size = 0;    
	}

    return size;
}

uchar MFRC522_Auth(uchar authMode, uchar BlockAddr, uchar *Sectorkey, uchar *serNum)
{
    uchar status;
    uint recvBits;
    uchar i;
	uchar buff[12]; 

	// Verification instructions + block address + sector password + card sequence number
    buff[0] = authMode;
    buff[1] = BlockAddr;
for (i=0; i<6; i++)

    {    
		buff[i+2] = *(Sectorkey+i);   
	}
    for (i=0; i<4; i++)
    {    
		buff[i+8] = *(serNum+i);   
	}
    status = MFRC522_ToCard(PCD_AUTHENT, buff, 12, buff, &recvBits);

    if ((status != MI_OK) || (!(Read_MFRC522(Status2Reg) & 0x08)))
    {   
		status = MI_ERR;   
	}
    
    return status;
}

uchar MFRC522_Read(uchar blockAddr, uchar *recvData)
{

    uchar status;
    uint unLen;

    recvData[0] = PICC_READ;
    recvData[1] = blockAddr;
    CalulateCRC(recvData,2, &recvData[2]);
    status = MFRC522_ToCard(PCD_TRANSCEIVE, recvData, 4, recvData, &unLen);

    if ((status != MI_OK) || (unLen != 0x90))
    {
        status = MI_ERR;
    }
    
    return status;
}

uchar MFRC522_Write(uchar blockAddr, uchar *writeData)
{
    uchar status;
    uint recvBits;
    uchar i;
	uchar buff[18]; 
    

    buff[0] = PICC_WRITE;
    buff[1] = blockAddr;
    CalulateCRC(buff, 2, &buff[2]);
    status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 4, buff, &recvBits);

    if ((status != MI_OK) || (recvBits != 4) || ((buff[0] & 0x0F) != 0x0A))
    {   
		status = MI_ERR;   
	}
        
    if (status == MI_OK)
    {
        for (i=0; i<16; i++)		// write 16Byte data into FIFO
        {    
        	buff[i] = *(writeData+i);   
        }
        CalulateCRC(buff, 16, &buff[16]);
        status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 18, buff, &recvBits);
        
		if ((status != MI_OK) || (recvBits != 4) || ((buff[0] & 0x0F) != 0x0A))
        {   
			status = MI_ERR;   
		}
    }
    
    return status;
}

void MFRC522_Halt(void)
{
	uchar status;
    uint unLen;
    uchar buff[4]; 

    buff[0] = PICC_HALT;
    buff[1] = 0;
    CalulateCRC(buff, 2, &buff[2]);
 
    status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 4, buff,&unLen);
}


Test Phenomenon

In this experiment, when the IC card gets close, RFID module writes data into the IC card, then reads out the data and displays it on the monitor window. As below picture shown:

thumb



Shipping List

  • RC522 RFID Module for Arduino x 1
  • White access card x 1
  • Blue key chain x 1


thumb


Resources

  • Download the Test Code and libraries SPI

https://fs.keyestudio.com/KS0067

  • Video

http://video.keyestudio.com/ks0067/



Buy from