Ks0007 keyestudio L298P Motor Shield: Difference between revisions

From Keyestudio Wiki
Jump to navigation Jump to search
(Created page with "thumb|600px|right|Keyestudio UNO R3 Board ==Introduction== You can use UNO R3 microcontroller and add external components to complete a variety of amazin...")
 
 
(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[image:ks0007.png|thumb|600px|right|Keyestudio UNO R3 Board]]
[[image:图片1- ks0007.png|thumb|600px|right|Keyestudio L298P Motor Shield]]


==Introduction==
==Introduction==
Line 6: Line 6:
The green terminal blocks should been connected to VIN /GND pins on the UNO. You can supply the power to the board via the terminal blocks or black DC jack of UNO. The maximum voltage supply is DC 18V.<br>
The green terminal blocks should been connected to VIN /GND pins on the UNO. You can supply the power to the board via the terminal blocks or black DC jack of UNO. The maximum voltage supply is DC 18V.<br>
Onboard also comes with through-hole pad, so you are able to weld the electronic elements to design a variety of prototyping circuits.  <br>
Onboard also comes with through-hole pad, so you are able to weld the electronic elements to design a variety of prototyping circuits.  <br>
<br>[[Image:UNO dimensions.png|800px|frameless]]<br>
<br>[[Image:KS0007 back.jpg|800px|frameless]]<br>


<br>
<br>
Line 13: Line 13:
{| class="wikitable" cellpadding="1" cellspacing="1"
{| class="wikitable" cellpadding="1" cellspacing="1"
|-
|-
! scope="right" |  Logic part input voltage  
! scope="right" |  Logic part input voltage VD
| VD: 5V
| 5V
|-
|-
! scope="right" | Driving part input voltage VS
! scope="right" | Driving part input voltage VS
| VIN input 6.5 ~ 12V, PWRIN input 4.8 ~ 24V
| Max DC 18V (DC 7-12V recommended)
|-
|-
! scope="row" | Logic part working current Iss
! scope="row" | Logic part working current Iss
Line 29: Line 29:
|-
|-
! scope="row" | Control signal input level
! scope="row" | Control signal input level
| High level: 2.3V ≤ Vin ≤ 5V  Low   level: -0.3V ≤ Vin ≤ 1.5V
| High level: 2.3V ≤ Vin ≤ 5V ; Low level: 0V ≤ Vin ≤ 1.5V
|-
|-
! scope="row" | Working temperature
! scope="row" | Working temperature
Line 37: Line 37:
| Dual power H bridge driving
| Dual power H bridge driving
|}
|}
<br>
<br>
<br>


Line 44: Line 45:


==Technical Details==
==Technical Details==
* Dimensions: 60mm x 54mm  
* '''Dimensions:''' 60mm x 54mm  
* Weight: 20.8g
* '''Weight:''' 20.8g
<br>[[Image:KS0007 Detail.jpg|800px|frameless]]<br>
<br>[[Image:KS0007 Detail.jpg|800px|frameless]]<br>


Line 59: Line 60:
===Upload the Code===
===Upload the Code===
Below is an example code, you can copy and paste it on [http://wiki.keyestudio.com/index.php/Download_Arduino_IDE Arduino IDE].
Below is an example code, you can copy and paste it on [http://wiki.keyestudio.com/index.php/Download_Arduino_IDE Arduino IDE].
[http://wiki.keyestudio.com/index.php/How_to_Download_Arduino_IDE Download Arduino IDE]  
* [http://wiki.keyestudio.com/index.php/How_to_Download_Arduino_IDE Download Arduino IDE]  
[http://wiki.keyestudio.com/index.php/How_to_Install_Arduino_Driver Install Arduino Driver]
* [http://wiki.keyestudio.com/index.php/How_to_Install_Arduino_Driver Install Arduino Driver]
<pre>
<pre>
int E1 = 3;   
int E1 = 3;   
Line 89: Line 90:


<br>
<br>
===Test Result===
Upload well the code, you should see the two motors firstly turn forward for 8 seconds, then reverse for 8 seconds, repeatedly.
<br>[[Image:KS0007 Result.png|600px|frameless]]<br>


==Test Result==
Upload well the code, you should see the two motors firstly turn forward for 8 seconds, then reverse for 8 seconds, repeatedly.
<br>[[Image:KS0007 Detail.png|800px|frameless]]<br>
<br>
<br>


==Resources ==
==Resources ==


'''Video'''<br>
*'''Video:'''
http://www.keyestudio.com/wp/ks0007/


'''PDF'''<br>
http://video.keyestudio.com/ks0007/
https://drive.google.com/open?id=1yU9UR8Nd2pfKEiHc0vDGMtQtOl56GoC6
 
*'''PDF:'''
 
https://fs.keyestudio.com/KS0007


<br>
<br>


==Get One Now ==
==Get One Now ==
'''Official Website'''<br>
*[https://www.keyestudio.com/keyestudio-l298p-shield-2a-high-current-dual-motor-drive-module-for-arduino-p0178.html  '''Official Website''' ]
http://www.keyestudio.com/ks0007.html
 
*[https://www.amazon.com/KEYESTUDIO-16-channel-12-bit-Shield-Arduino/dp/B0797JK4RW  '''SHOP ON Amazon Store''']
 
*[https://www.aliexpress.com/store/product/Free-shipping-L298p-Motor-shield-motor-drive-for-arduino/1452162_2043390148.html?spm=2114.12010612.8148356.41.6ce7276fW7Iht4 '''SHOP ON Aliexpress Store''']


'''Amazon Store'''<br>
*[https://www.ebay.com/itm/Keyestudio-L298P-Shield-R3-DC-Motor-Driver-Module-2A-H-Bridge-2-way-For-Arduino/132762248986?hash=item1ee93f271a:g:AlMAAOSwSdFbMoQM  '''SHOP ON Ebay Store''' ]
https://www.amazon.com/Shield-current-driver-module-Arduino/dp/B016PNP93I/




[[Category: Shield]]
[[Category: Shield]]

Latest revision as of 10:18, 29 April 2021

Keyestudio L298P Motor Shield

Introduction

You can use UNO R3 microcontroller and add external components to complete a variety of amazing experiments, such as smart robot DIY. When DIY your robot, it is necessary to use the motor driver board to drive the DC motors, however, sometimes need to connect the motor drive board to UNO using lots of jumper wires, pretty inconvenient.
Now, we have launched this keyestudio motor shield with L298P as core. Just simply stack it onto UNO R3 board when using. Note that the motor’s speed and direction interfaces have been connected. D3 is for controlling the speed of motor A, and D12 is for controlling the direction of motor A. D11 is for controlling the speed of motor B, and D13 is for controlling the direction.
The green terminal blocks should been connected to VIN /GND pins on the UNO. You can supply the power to the board via the terminal blocks or black DC jack of UNO. The maximum voltage supply is DC 18V.
Onboard also comes with through-hole pad, so you are able to weld the electronic elements to design a variety of prototyping circuits.

KS0007 back.jpg


Specifications

Logic part input voltage VD 5V
Driving part input voltage VS Max DC 18V (DC 7-12V recommended)
Logic part working current Iss ≤36mA
Driving part working current Io ≤ 2A
Maximum dissipation power 25W (T=75℃)
Control signal input level High level: 2.3V ≤ Vin ≤ 5V ; Low level: 0V ≤ Vin ≤ 1.5V
Working temperature -25℃ to+130℃
Driver form Dual power H bridge driving



Controller Compatible


Technical Details

  • Dimensions: 60mm x 54mm
  • Weight: 20.8g


KS0007 Detail.jpg


PINOUT Instruction


KS0007 PINOUT.jpg


How to Test it ?

Connect it Up

Simply stack the shield onto UNO R3 board, then connect two motors to terminal block.

Upload the Code

Below is an example code, you can copy and paste it on Arduino IDE.

int E1 = 3;  
int M1 = 12;
int E2 =11;                        
int M2 = 13;                          

void setup()
{
    pinMode(M1, OUTPUT);  
    pinMode(M2, OUTPUT);
}

void loop()
{
    digitalWrite(M1,HIGH);  
    digitalWrite(M2, HIGH);      
    analogWrite(E1, 200);   // PWM regulate speed
    analogWrite(E2, 200);   // PWM regulate speed
    delay(8000);
    digitalWrite(M1,LOW);  
    digitalWrite(M2, LOW);      
    analogWrite(E1, 200);   //PWM regulate speed
    analogWrite(E2, 200);   //PWM regulate speed
    delay(8000);
}


Test Result

Upload well the code, you should see the two motors firstly turn forward for 8 seconds, then reverse for 8 seconds, repeatedly.
KS0007 Result.png


Resources

  • Video:

http://video.keyestudio.com/ks0007/

  • PDF:

https://fs.keyestudio.com/KS0007


Get One Now